Study & Analysis of Household WiFi Speed Huafeng Zhang

Questions of Interest

Obstacles

Do *obstacles* affect WiFi speed?

Distance

Does the *distance* between WiFi router and WiFi users affect the WiFi speed?

of WiFi Users

How does the *number of WiFi users* affect WiFi speed?

Interaction

Is there any *interaction* among these three factors on WiFi speed?

Study Design— Three Factor Factorial CRD

Response: <u>download speed</u>;

Response unit: Mbps;

n=5, N=120.

Other issues:

- 1. Ran this experiment in the early morning .
- 2. Turned off Microwave and other devices.

Obstacle:

- 1. With or without.
- 2. Obstacle was <u>simulated</u> using a computer monitor and a board.
- 3. between WiFi router and WiFi users.

of WiFi Users:

- 1. 1, 2, 3, 4
- 2. All Apple Devices.
- 3. All used Google Incognito to connect testmy.net
- 4. only allowed to download the same file (12 MB data) at the same time.

50 ft

Distance:

- 1. 10, 30, 50 feet.
- Was measured in a straight line free of obstacle.
- 3. Set a table between different distances.

Pics of the Experiment

Model

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + \tau \beta_{ij} + \tau \gamma_{ik} + \beta \gamma_{jk} + \tau \beta \gamma_{ijk} + \xi_{ijkl}$$

- y_{ijkl} is the WiFi speed for lth observation from the (i, j, k)th treatment.
- μ is the baseline mean of WiFi speed.
- τ_i, β_j, γ_k are the main effect for the factors obstacle, distance, and number of users, respectively.
- (τβ)_{ij}, (τγ)_{ik}, (βγ)_{jk} are the two-factor interaction effects for the interaction obstacle * distance, obstacle * number of users, and distance * number of users.
- (τβγ)_{ijk} is the three factor interaction effects for the obstacle * distance
 * number of users interaction.

 ξ_{ijkl} is the radom error of the lth observation from the (i, j, k)th treatment, assumed that ξ_{ijkl} sim IID N(0, σ²)

- H₀:τ₁=τ₂=0, H_a:∃τ_i ≠0;
- H₀:β₁=β₂=β₃=0, H_a:∃ β_j≠0;
- H₀:γ₁ = γ₂= γ₃ = 0, H_a:∃ γ_k ≠ 0;
- H₀:(τβ)₁₁=(τβ)₁₂=...=(τβ)₂₃=0, H_a: ∃(τβ)_{ij}≠0
- $H_0:(\tau \gamma)_{11}=(\tau \gamma)_{12}=...=(\tau \gamma)_{24}=0, H_a: \exists (\tau \gamma)_{ik}\neq 0$
- $H_0:(\beta\gamma)_{11}=(\beta\gamma)_{12}=...=(\beta\gamma)_{34}=0, H_a: \exists (\beta\gamma)_{jk}\neq 0$
- H₀:(τβγ)₁₁₁=(τβγ)₁₂=...=(τβγ)₂₃₄=0, H_a: ∃(τβγ)_{ijk}≠0

Assumptions

Homogeneity of Variance

Normality

Box-Cox Transformation

The result suggests that λ =0.4, that is, the response *Speed* will be transformed to *Speed*^{0.4} in order to maximize R².

However, *Speed*^{0.4} and *log(Speed)* are very close within the range of my WiFi speed (2-15), and R² for *log(Speed)* is 0.9144, which is very close to the R² for *Speed*^{0.4} (0.9149).

It is easier to interpret the results when using log(Speed). So I transformed speed to log(Speed).

Diagnostics Plots for Transformed Data •••••

Homogeneity of Variance

Normality

Results: Distance

Model Summary

R	0.9144
Squared	
Model DF	23
Error DF	96
Root MSE	0.1189

Source	DF	Type III SS	Mean Square	F value	Pr>F
Distance	2	0.1438	0.0719	5.08	0.008

Results: Obstacle, Number_Users

Source	DF	Type III SS	Mean Square	F value	Pr>F
Obstacle	1	0.3017	0.3017	21.32	< 0.0001
Number_Users	3	13.0712	4.3572	307.93	< 0.0001

Results: Interactions

Source	D	Type III SS	Mean	F	Pr>F
	F		Square	value	
Obstacle*Distance*Number_Us ers	6	0.1288	0.0215	1.52	0.1807
Distance*Obstacle	2	0.5499	0.2749	19.43	< 0.0001
Distance*Number_Users	6	0.1437	0.0239	1.69	0.1310
Obstacle*Number_Users	3	0.1706	0.0569	4.02	0.0097

Post-Hoc Power Analysis

Dependent Variable	log(Speed
	1
Alpha	0.05
Error Standard	0.1189
Lifor Otaridara	0.1100
Deviation	
Test Sample Size	120
rest oample oize	120
Error Degrees of	96
	30
Freedom	

Source	Test DF	Power
Distance	2	0.477
Obstacle	1	0.929
Distance*Obstacle	2	0.997
Number_Users	3	>0.999
Distance*Number_ Users	6	0.293
Obstacle*Number_ Users	3	0.484
Distance*Obstacle *Number_Users	6	0.352

- This study has great power in finding effects of *Obstacle* (power = 0.929), *Distance*Obstacle* (power > 0.997), and *Number_Users* (power > 0.999) on the mean of log(Speed), if these effects actually exists.
- This study design has moderate power in detecting an effect of *Distance* (power = 0.477) and *Obstacle*Number_Users* (power = 0.484) on the mean of log(Speed), if these effects actually exists.
- Although the power for *Distance*Number_Users* (power = 0.293), *Distance*Obstacle*Number_Users* (power = 0.352) are relatively lower than other terms in the model, these two power are not extremely low.

Conclusions

Distance

There is strong evidence that the distance between WiFi router and WiFi users has effects on the mean of log(Speed).(F(2, 96) = 5.08, p-value = 0.008)

Number of Users

There is very strong evidence against the null hypothesis that there is no effect of the number of WiFi users on the mean of log(Speed). (F(3,96) = 307.93, p-value < 0.0001)

Obstacle

There is very strong evidence that obstacle has effects on the mean of log(Speed) (F(1, 96) = 21.32, p-value < 0.0001).

Interactions

No evidence for interaction:

- Distance*Number_User (p-value=0.131);
- Distance*Obstacle*Number_User (p-value=0.1807). Moderate evidence of interaction:
- Obstacle*Number_User (p-value=0.01) Strong evidence of interaction:
- Distance*Obstacle (p-value<0.0001)

Lessons Learned

Design

- Use representative Apple laptops to record the data;
- Use a pilot study and preliminary power analysis to get sample size for desired power;
- Do a little bit more research about the normal file size for people to download.

Analysis

- If time allows, use practical significant difference while analyzing data;
- Interpret results using original scale;
- Use orthogonal contrast test to find the relationship between distance and WiFi speed.

Questions

