Causality in machine learning

Given recent advances and interest in machine learning, those of us with traditional statistical training have had occasion to ponder the similarities and differences between the fields. Many of the distinctions are due to culture and tooling, but there are also differences in thinking which run deeper. Take, for instance, how each field views the provenance of the training data when building predictive models. For most of ML, the training data is a given, often presumed to be representative of the data against which the prediction model will be deployed, but not much else. With a few notable exceptions, ML abstracts away from the data generating mechanism, and hence sees the data as raw material from which predictions are to be extracted. Indeed, machine learning generally lacks the vocabulary to capture the distinction between observational data and randomized data that statistics finds crucial. To contrast machine learning with statistics is not the object of this post (we can do such a post if there is sufficient interest). Rather, the focus of this post is on combining observational data with randomized data in model training, especially in a machine learning setting. The method we describe is applicable to prediction systems employed to make decisions when choosing between uncertain alternatives.

Read the story >>